Physics, asked by harikrishnan23, 8 months ago

if x=10t^2-10/t plus 20
find dx/dt​

Answers

Answered by zahaansajid
2

\mathbb{\underline {ANSWER}}

\frac{dx}{dt} = 20t +\frac{10}{t^{2} }

\mathbb {\underline {EXPLANATION}}

x = 10t^{2}-\frac{10}{t} +20

\frac{dx}{dt} =\frac{d}{dt} [10t^{2}-\frac{10}{t} +20 ]

\frac{dx}{dt} = \frac{d}{dt} (10t^{2} ) +  \frac{d}{dt} (\frac{-10}{t} )+ \frac{d}{dt} (20)

We know that,

\frac{d}{dt} (t^{n} )=nt^{n-1}

\frac{d}{dt} (kx)=k  \frac{d}{dt} (x)   where k is a constant

\frac{d}{dt} (k) = 0             where k is a constant

Hence,

\frac{d}{dt} (10t^{2} ) = 10* \frac{d}{dt} (t^{2} )=10*2t = 20t

\frac{d}{dt} (\frac{-10}{t} )= \frac{d}{dt} (-10t^{-1} )=-10* \frac{d}{dt} (t^{-1} )=-10*-1*t^{-1-1}= \frac{10}{t^{2} }

\frac{d}{dt} (20)=0

Therefore,

\frac{dx}{dt} =  \frac{d}{dt} (10t^{2} )+ \frac{d}{dt} (\frac{-10}{t} )+ \frac{d}{dt} (20)

\Rightarrow \frac{dx}{dt} = 20t +\frac{10}{t^{2} }

Similar questions