If x=15 evaluate 8 sin2x cos4x sin6x
Answers
Answered by
5
Answer:
Step-by-step explanation:
8 sin2x cos4x sin6x
= 8 sin(2*15) cos(4*15) sin(6*15)
= 8 sin30 cos60 sin 90
= 8 * (1/2) * (1/2) * 1
= 2
Answered by
0
Answer:
2
Step-by-step explanation:
8 sin2x cos4x sin6x
8 sin2x cos4x sin6x= 8 sin(2*15) cos(4*15) sin(6*15)
8 sin2x cos4x sin6x= 8 sin(2*15) cos(4*15) sin(6*15)= 8 sin30 cos60 sin 90
8 sin2x cos4x sin6x= 8 sin(2*15) cos(4*15) sin(6*15)= 8 sin30 cos60 sin 90= 8 * (1/2) * (1/2) * 1
8 sin2x cos4x sin6x= 8 sin(2*15) cos(4*15) sin(6*15)= 8 sin30 cos60 sin 90= 8 * (1/2) * (1/2) * 1= 2
Similar questions