if x=√2-1/√2+1 and xy=1 then find the value of x²/y-y²/x
pls solve it asap
Answers
Solution :
Given, x = (√2 - 1)/(√2 + 1)
And, xy = 1
We have to find the value of (x²/y) - (y²/x)
⇒ x = (√2 - 1)/(√2 + 1)
We have, xy = 1
⇒ y = 1/{(√2 - 1)/(√2 + 1)}
⇒ y = (√2 + 1)/(√2 - 1)
∴ x - y = (√2 - 1)/(√2 + 1) - (√2 + 1)/(√2 - 1)
= {(√2 - 1)² - (√2 + 1)²}/(√2 + 1)(√2 - 1)
Using identity : a² - b² = (a + b)(a - b)
= {(√2 - 1 + √2 + 1)(√2 - 1 - √2 - 1)}/{(√2)² - 1²}
= {(2√2)(-2)}/(2 - 1)
= -4√2/1
∴ x - y = -4√2
Now we have to find value of :
⇒ (x²/y) - (y²/x) = (x³ - y³)/xy
= {(x - y)³ + 3xy(x - y)}/xy
= {(-4√2)³ + 3 × 1 (-4√2)}/1
[∵ x - y = -4√2 ; xy = 1]
= {-64 × 2√2} - 12√2}/1
= -128√2 - 12√2
= -140√2