Math, asked by tanushreeduttasarkar, 4 months ago

If x ^2 + 1/4x ^ 2= 8 , find x^3 + 1/ 8 x ^3​

Answers

Answered by Anonymous
3

Answer:

x=3+

3

x

2

=(3+

8

)

2

=9+8+6

8

=17+6

8

x

2

+

x

2

1

=(3+

8

)

2

+

(3+

8

)

2

1

⇒17+6

18

+

17+6

8

1

17+6

8

(17+6

8

)

2

+1

×

(17−6

8

)

(17−6

8

)

289−288

(17+6

18

)

2

(17−6

8

)+(17−6

8

)

⇒(289−288)(17+6

8

)+17−6

8

⇒17+6

8

+17−6

8

=34

Answered by juwairiyahimran18
2

 {x}^{2}  +  \frac{1}{ {4x}^{2} }  = 8 \\  \\  {x}^{3}  +  \frac{1}{ {8x}^{3} }  =  \\  \\  {(x +  \frac{1}{2x}})^{2}   =  {x}^{2}  +  \frac{1}{ {4x}^{2}   }  + 2 \times x \times  \frac{1}{2x}  \\  \\    {(x +  \frac{1}{2x}})^{2}   = 8  +  1 \\  \\  {(x +  \frac{1}{2x}})^{2}   = 9 \\  \\  {(x +  \frac{1}{2x}})   =  \sqrt{9}  \\  \\  {(x +  \frac{1}{2x}})   = 3.

Case 1 :

 ({x +  \frac{1}{2x} })^{3}  =  {x}^{3}  +  \frac{1}{ {8x}^{3} }  + 3 \times x \times  \frac{1}{x} (x +  \frac{1}{x} ) \\  \\  {3}^{3}  =  {x}^{3}  +  \frac{1}{ {8x}^{3} }  +  \frac{9}{2}  \\  \\ 27 =  {x}^{3}  +   \frac{1}{ {8x}^{3} }  +  \frac{9}{2}  \\  \\  {x}^{3}  +  \frac{1}{ {8x}^{3} }  = 27 -  \frac{9}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } =  \frac{54 - 9}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } =  \frac{45}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } = 22 \times \frac{1}{2} .

Case 2 :

{x}^{3}  +  \frac{1}{ {8x}^{3} }  =  - 27  +  \frac{9}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } =  \frac{ - 54  +  9}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } =  \frac{ - 45}{2}  \\  \\ {x}^{3}  +  \frac{1}{ {8x}^{3} } =  - 22  \frac{1}{2} .

Similar questions