English, asked by s1218virajdigambarpa, 5 months ago

if x^2 +1/x^2=14 then find the value of x+1/x​

Answers

Answered by Anonymous
11

x²+1/x²=14

x²+1/x²=14(x+1/x)²-2.x.1/x=14

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4then

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4thenx³+1/x³-3.x.1/x(x+1/x)

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4thenx³+1/x³-3.x.1/x(x+1/x)(x+1/x)³-3(x+1/x)

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4thenx³+1/x³-3.x.1/x(x+1/x)(x+1/x)³-3(x+1/x)(4)³-3(4)

x²+1/x²=14(x+1/x)²-2.x.1/x=14(x+1/x)²-2=14(x+1/x)²=16Take off the square roots(x+1/x)=4thenx³+1/x³-3.x.1/x(x+1/x)(x+1/x)³-3(x+1/x)(4)³-3(4)64-12

52

Hope it helps you!!!

Answered by Anonymous
2

 \\ \large\sf\underline{ \underline{ \red{given : }}} \\  \\

 \sf{ {x}^{2} +  \frac{1}{ {x}^{2} } = 14  }

 \\  \\ \large\sf\underline{ \underline{ \red{to \: find : }}} \\  \\

 \sf{x +  \frac{1}{x} }

 \\  \\ \large\sf\underline{ \underline{ \red{solution : }}} \\  \\

 \boxed{ \bf{(a +  {b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab  }}

Here ,

  • a = x

  • b = 1/x

Putting values , we get..

 \\   \implies\sf \: (x +  { \frac{1}{x}) }^{2} =   \underline{{x}^{2}   +  { (\frac{1}{x}) }^{2} } + 2( \cancel{x})( \frac{1}{ \cancel x } ) \\  \\  \\  \implies \sf \:( x +  { \frac{1}{x} )}^{2}  = 14 + 2 \\  \\  \\   \implies\sf{(x +  { \frac{1}{x} )}^{2} } = 16 \\  \\  \\   \implies\sf \: x +  \frac{1}{x}  =  \sqrt{16}  \\  \\  \\  \implies  \underline{\boxed{   \rm{ \green{x +  \frac{1}{x}  = 4}}}}

 \\  \\

More identities :-

  • ( a - b )² = a² + b² - 2ab

  • (a+b)(a-b) = a² - b²

  • (a+x)(a+y) = a² + (x+y)a + xy

Similar questions