Math, asked by bidrohi1234, 10 months ago

If x^2+1/x^2=34,find x^3+1/x^3-9

Answers

Answered by tahseen619
5

189

Step-by-step explanation:

{\underline{{\text{Given:}}}}

 {x}^{2}  +  \dfrac{1}{ {x}^{2} }  = 34

{\underline{{\text{To Find:}}}}

 {x}^{3}  +  \dfrac{1}{ {x}^{3} }  - 9

{\underline{{\text{Solution:}}}}

First we should find the value of  x+ \dfrac{1}{x}

So,

 {x}^{2}  +  \frac{1 }{ {x}^{2} }  = 34  \\  \\  [\text{Adding 2 in both side}] \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 34 + 2 \\  \\  {x}^{2}  + 2. x. \frac{1}{x}  +  \frac{ 1 }{ {x}^{2} }  = 36 \:\:  [\text{Using i}]\\  \\  {(x +  \frac{1}{x}) }^{2}  =  {(6)}^{2}   \\  \\  [\text{Cancelling power in both side}] \\  \\ x +  \frac{1}{x}  = 6 \:  \:  \:  \: .......(1)

Now,

x +  \frac{1}{x}  = 6 \\  \\ [\text{Cubing both side}] \\  \\  {(x +  \frac{1}{x})}^{3}  =  {6}^{3}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3.x. \frac{1}{x} (x +  \frac{1}{x} ) = 216 \: \: [\text{Using ii}] \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3. \cancel{x}. \frac{1}{\cancel{x}} (6) = 216 \:  [\text{From 1}]  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  + 18 = 216 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 216  - 18 \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  = 198 \\  \\ [\text{Subtracting 9 from both side}] \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }   - 9= 198 - 9  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} }   - 9= 189

Hence, the required answer is 189.

{\boxed{\blue{\text{Important Algebra Formula}}}}

 {(x + y)}^{2}={x}^{2}+{y}^{2}+2xy....[\text{i}]\\ \\{(x - y)}^{2}={x}^{2}+{y}^{2}-2xy\\ \\{(x+y)}^{2}= (x - y) {}^{2}+4xy\\ \\{(x-y)}^{2}=(x+y){}^{2}-4xy\\ \\ (x + y)^{2}+(x-y)^{2}=2( {x}^{2}+{y}^{2} )\\ \\(x+y)^{2}- (x-y) {}^{2}=4xy\\ \\ {(x + y)}^{3}={x}^{3}+{y}^{3}+ 3xy(x + y)....[\text{ii}]\\ \\(x - y)^{3}={x}^{3}-{y}^{3}- 3xy(x - y)

Similar questions