Math, asked by rajatkumaryadav35, 5 months ago

if x^2+1/x^2=34 then find the value of x^3+1/x^3 please tell fast​

Answers

Answered by aryan073
4

Given :

 \\  \red \bigstar \tt \:  \frac{ {x}^{2}  + 1}{ {x}^{2} }  = 34

To Find :

\\ \pink\bigstar\tt { \dfrac{x^{3}+1}{x^{3}}=?}

Solution :

By using square formula :

 \\  \implies \sf \:  { \bigg( \frac{x + 1}{x} \bigg) }^{2}  = \bigg(  \frac{ {x}^{2}  + 1}{ {x}^{2} + 2}  \bigg) \\  \\  \implies \sf \bigg(  { \frac{x + 1}{x} } \bigg)^{2}  = 34 + 2 \\  \\  \implies \sf \bigg(  { \frac{x + 1}{x} } \bigg)^{2}  = 36 \\  \\  \implies \boxed{ \sf{ \bigg( \frac{x + 1}{x}  \bigg) = 6}}

Now, by using cubic formula :

 \\  \implies \sf \: \bigg(  { \frac{x + 1}{x} } \bigg)^{3}  =  \bigg( {x}^{3}  +  \frac{1}{ {x}^{3} }  + 3 \times x \times  \frac{1}{x}  \bigg) \\  \\  \implies \sf \:  {6}^{3}  - 3(6) =  \bigg( {x}^{3}  +  \frac{1}{ {x}^{3} }  \bigg) \\  \\  \implies \sf \: 216 - 18 =  \bigg( {x}^{3}  +  \frac{1}{ {x}^{3} }  \bigg) \\  \\  \implies \boxed{ \sf{ \bigg( {x}^{3}  +  \frac{1}{ {x}^{3} }  \bigg) = 198}}

The correct answer will be 198

Similar questions