Math, asked by rajpanditfbg, 1 year ago

if x^2+1/x^2=66 then x-1/x=​

Answers

Answered by Mark101
1

Answer: 8

Step-by-step explanation:

x²+(1/x²)=66 (Given)

Now we know that

[x-(1/x)]² = x²+(1/x²) -2 ( By using (a+b)²= a²+b²+2ab)

So [x-(1/x)]² = 66-2

[x-(1/x)]² = 64

[x-(1/x)] = sq.rt 64

[x-(1/x)] = 8.

Thanks.

Hope it helps.

Answered by Salmonpanna2022
2

Step-by-step explanation:

 \bf \underline{Solution-} \\

 \sf{ {x}^{2}  + \frac{1}{ {x}^{2} }   = 66} \\

 \bf \underline{To find-} \\

 \sf{the \: value \: of  :\: x -  \frac{1}{x}  = \:  ?} \\

 \bf \underline{Solution-} \\

  \sf {\bigg(x -  \frac{1}{x}  \bigg) ^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2}  }   - 2 \:  \:  \: \:  \:  \:    [ \because \: (a - b {)}^{2}  =  {a}^{2} +  {b}^{2}  - 2ab ]} \\  \\  = 66 - 2 \:  \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \: \: \:\rm{ [ \because {x}^{2}   +  \frac{1}{ {x}^{2}} = 66 \:(Given)  ]  } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: \: \: \:= 64 \\

 \sf{ \therefore \:  \:  \:  \:  \:  \: x -  \frac{1}{x} =  \sqrt{64} } \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ± \: 8 \\

 \bf\underline{Hence,the \: value \: of :  \: x -  \frac{1}{x}  \: is  \: ± \: 8.} \\

Similar questions