Math, asked by shahidkhan243503, 1 year ago

If x^2+1/x^2=7, find the value of x^3+1/x^3

Answers

Answered by Anonymous
8

 \rm{given \:  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7}

 \rm{{(x +  \frac{1}{x} )}^{2}  =  {x}^{2}  +   \frac{1}{ {x}^{2} }  + 2}

 \implies \rm{{(x +  \frac{1}{x} )}^{2}  =  7 + 2}

  \implies\rm{{(x +  \frac{1}{x} )}^{2}  =  9}

 \implies\rm{x +  \frac{1}{x}  =   \sqrt{9} }

\implies\rm{x +  \frac{1}{x}  =   3}

 \sf{cubing \: on \: both \: sides}

 \rm{(x +  \frac{1}{x})}^{3}   =    {3}^{3}

  \implies\rm{ {x}^{3} +  \frac{1}{ {x}^{3} }  + 3(x +  \frac{1}{x} ) } = 27

 \implies\rm{ {x}^{3} +  \frac{1}{ {x}^{3} }  + 3(3) } = 27

 \implies\rm{ {x}^{3} +  \frac{1}{ {x}^{3} }  + 9} = 27

 \implies\rm{ {x}^{3} +  \frac{1}{ {x}^{3} }  } = 27 - 9

 \fbox{\rm{ {x}^{3} +  \frac{1}{ {x}^{3} }  } = 18}


Nilkanth29: hii
Nilkanth29: why
Nilkanth29: plZzzz follow me
Nilkanth29: I follow you
shahidkhan243503: thanks
Similar questions