Math, asked by gjhhjjgghjhhh, 11 months ago

if x^2+1/x^2=7, then find the valuex^3+1/x^3=?​

Answers

Answered by Anonymous
3

Heya!!

+ 1/= 7 Find +1/

( x + 1/x )² - 2 = 7

Becoz ( + ) = ( a + b )² - 2ab

( x + 1/x )² = 9

( x + 1/x ) = ±3

+ 1/= ( x + 1/x )³ - 3 ( x + 1/x )

Becoz ( + ) = ( a + b )³ -3ab ( a + b )

+ 1/ = ( ±3 )³ - 3 ( ± 3 )

Taking -ive values

+ 1/ = -27 + 9

Taking +ive values

+ 1/= 27 - 9

+ 1/ = -18

OR

+ 1/ = 18

Answered by Anonymous
3

Given, \: \sf{ {x}^{2}  +  \frac{1}{ {x}^{2} } = 7 }

 \sf {( x +  \frac{1}{x} )}^{2}  = {x}^{2} +   \frac{1}{ {x}^{2} }  + 2

\sf {( x +  \frac{1}{x} )}^{2}  = 7  + 2

\sf {( x +  \frac{1}{x} )}^{2}  = 9

\sf x +  \frac{1}{x}   =  \sqrt{9}

\sf x +  \frac{1}{x}   =  3

Now,

Cubing on both sides

\sf {(x +  \frac{1}{x})}^{3}    =  {3}^{3}

\sf { {x}^{3} +  \frac{1}{ {x}^{3} }}   + 3(x +    \frac{1}{x})   =  27

\sf { {x}^{3} +  \frac{1}{ {x}^{3} }}   + 3(3) =  27

\sf { {x}^{3} +  \frac{1}{ {x}^{3} }}   =  27 - 9

 \fbox{\sf { {x}^{3} +  \frac{1}{ {x}^{3} }}   =  18}

Similar questions