Math, asked by mufiahmotors, 1 month ago

if x^2 + 1 / x^2 = 83 . find the value of x^3 - 1/ x^3

no spam need correct✅ answer​

Answers

Answered by Pawansingh5511
2

Answer:

56 is the correct answer

please mark me as brainleest please I beg you

Answered by brainlyanswerer83
45

Answer:

→ Hey Mate,

→ Given Question : if    x^{2}  + \frac{1}{x^2} = 83 .  find the value of  x^{3}  - \frac{1}{x^3}

→ Step-by-step explanation:

→ Solution :

( x-\frac{1}{x} )^2 = x^2 + \frac{1}{x^2} -2

( x - \frac{1}{x} ) ^2  = 83  - 2                           [  Putting x^2 + \frac{1}{x^2} = 83 ]

( x - \frac{1}{x^2} ) = 81

( x - \frac{1}{x^2} ) = 9^2

x - \frac{1}{x}  = 9                                         [ Taking square root of both sides]

( x - \frac{1}{x} ^3 ) = 9^3                                     [ cubing both sides]

(x^3 - \frac{1}{x^3} ) - 3 ( x - \frac{1}{x} ) = 729            

x^3 - \frac{1}{x^3} - 3 ×  9 = 279

x^3 - \frac{1}{x^3} = 729 + 27 = x^3 - \frac{1}{x^3} = 756

-----------------------------------------------------------------------------------

Similar questions