Math, asked by kavithabijuGouri, 1 year ago

If x^2 +1/x^2 =98 find x^3 +1/x^3

Answers

Answered by kumarankur164p7u2qy
3
970 is ur answer...first find x+1/x...then cube it
Attachments:

kavithabijuGouri: Can u explain with steps
kavithabijuGouri: thank you
kavithabijuGouri: Thank you. I got
abhi569: Correct your answer
abhi569: Sorry for the confusion, your answer is correct
Answered by Robin0071
0
Solution:-

given :- x^2 +1/x^2 =98 ;- x^2 +1/x^2 =98=?

 {(x +  \frac{1}{x} })^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  - 2 \\ {(x +  \frac{1}{x} })^{2} = 98 - 2 \\ {(x +  \frac{1}{x} }) =  \sqrt{96}  \\ {(x +  \frac{1}{x} })= 4 \sqrt{6}  \\  \\ {(x +  \frac{1}{x} })^{3} =  {x}^{3}  +  \frac{1}{ {x}^{3} }  - 3({(x +  \frac{1}{x} }) \\  {x}^{3}  +  \frac{1}{ {x}^{3} }  =   { \sqrt{96} }^{3}  + 3 \sqrt{96}  \\ \\  {x}^{3}  +  \frac{1}{ {x}^{3} } =   96 \sqrt{96}  +  3\sqrt{96}  \\  \\  {x}^{3}  +  \frac{1}{ {x}^{3} } = 99 \sqrt{96}  \\ \\  {x}^{3}  +  \frac{1}{ {x}^{3} } = 396 \sqrt{6}  \\





abhi569: Correct your first line, (x + 1/x)^2 ≠ a^2 + b^2 -2
abhi569: x^2 + 1/x^2 -2
abhi569: And then correct your answer
Similar questions