Math, asked by BLAZER914, 11 months ago

If x^2 +1/x2 =23 find the value of x-1/x

Answers

Answered by spiderman2019
4

Answer:

√21

Step-by-step explanation:

(x - 1/x)² = x² + 1/x² - 2 = 23 -2 = 21

x - 1/x = √21.

Answered by payalchatterje
1

Answer:

The value of x-1/x is √21.

Step-by-step explanation:

Given,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 23

We know,

 {a}^{2}  +  {b}^{2}  =  {(a  -  b)}^{2}   +  2ab

So,

 {x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x  -  \frac{1}{x}) }^{2}   + 2 \times x \times  \frac{1}{x}  \\  =  {(x -  \frac{1}{x}) }^{2}  + 2

According to question,

 {(x -  \frac{1}{x}) }^{2}  + 2 = 23 \\  {(x -  \frac{1}{x} )}^{2}  = 21 \\ x -  \frac{1}{x}  =  \sqrt{21}

This is a problem of Algebra.

Some important Algebra's formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x + y)( {x}^{2}   -  xy +  {y}^{2} )

Two more important Algebra's problem:

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ3

Similar questions