Math, asked by Assassin12, 1 year ago

if x=2+(2^1/3)+(2^2/3),then find the value of x³-6x²+6x-2

Attachments:

Answers

Answered by mysticd
6

 Given \: x = 2 + 2^{\frac{1}{3}} + 2^{\frac{2}{3}}

 \implies  x - 2 =  2^{\frac{1}{3}} + 2^{\frac{2}{3}}\: --(1)

/* Cubing on both sides , we get */

 \implies  (x - 2)^{3} =\Big(  2^{\frac{1}{3}} + 2^{\frac{2}{3}} \Big)^{3}

 \implies x^{3} - 3\times x^{2} \times 2 + 3 \times x \times 2^{2} - 2^{3} \\= (2^{\frac{1}{3}})^{3} + (2^{\frac{2}{3}})^{3} - 3 \times (2^{\frac{1}{3}}) \times (2^{\frac{2}{3}}) \Big(  2^{\frac{1}{3}} + 2^{\frac{2}{3}} \Big)

/* By Algebraic Identity */

 \pink { (a-b)^{3} = a^{3} - 3a^{2}b+3ab^{2} - b^{3} }

 \orange { (a+b)^{3} = a^{3} + b^{3} +3ab(a+b) }

 \implies x^{3} - 6x^{2} + 12x - 8 \\= 2 + 4 + 3\times 2^{\frac{1+2}{3}} ( x - 2 ) \: [ From \:(1) ]

 \implies x^{3} - 6x^{2} + 12x - 8 \\= 6 + 3\times 2^{\frac{3}{3}} ( x - 2 )

 \implies x^{3} - 6x^{2} + 12x - 8 \\= 6 +6 ( x - 2 )

 \implies x^{3} - 6x^{2} + 12x - 8 \\= 6 + 6x -12

 \implies x^{3} - 6x^{2} + 12x - 8 -6 - 6x +12= 0

 \implies x^{3} - 6x^{2} + 6x - 2= 0

Therefore.,

 \red { Value \: of \: x^{3} - 6x^{2} + 6x - 2}\green {= 0}

•••♪

Similar questions