Math, asked by diya586347, 5 months ago

if x=2-√3/2+√3 and y=2+√3/2-√3 find x²-y²​

Answers

Answered by Anonymous
2

Answer:

Answer is in Attachment....................

Attachments:
Answered by Anonymous
15

Given:-

  • x = \sf{\dfrac{2 - \sqrt{3}}{2 + \sqrt{3}}}
  • y = \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

To Find:-

  • The value of x² - y²

Solution:-

We have,

x = \sf{\dfrac{2 - \sqrt{3}}{2 + \sqrt{3}}}

By Rationalizing the denominator

\sf{\dfrac{2 - \sqrt{3}}{2 + \sqrt{3}}\times \dfrac{2 - \sqrt{3}}{2 - \sqrt{3}}}

= \sf{\dfrac{(2 - \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}}

By applying the identity,

(a - b)² = a² - 2ab + b²

= \sf{\dfrac{(2)^2 - 2\times 2\times\sqrt{3} + (\sqrt{3})^2}{4 - 3}}

= \sf{\dfrac{4 - 4\sqrt{3} + 3}{1}}

= \sf{7 - 4\sqrt{3}}

Therefore x = (7 - 4√3)

Now,

We also have,

y = \sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}}

By Rationalizing the denominator,

\sf{\dfrac{2 + \sqrt{3}}{2 - \sqrt{3}}\times \dfrac{2 + \sqrt{3}}{2 + \sqrt{3}}}

= \sf{\dfrac{(2 + \sqrt{3})^2}{(2)^2 - (\sqrt{3})^2}}

By applying the identity,

(a + b)² = a² + 2ab + b²

= \sf{\dfrac{(2)^2 + 2\times 2 \times \sqrt{3} + (\sqrt{3})^2}{4 - 3}}

= \sf{\dfrac{4 + 4\sqrt{3} + 3}{1}}

= \sf{7 + 4\sqrt{3}}

Therefore y = 7 + 4√3

Now,

We were asked to find the value of x² - y²

Hence putting the values of x and y,

\sf{x^2 - y^2 = (7 - 4\sqrt{3})^2 - (7 + 4\sqrt{3})^2}

By applying the property

(a + b)² = a² + 2ab + b²

(a - b)² = a² - 2ab + b²

\sf{(7 - 4\sqrt{3})^2 - (7 + 4\sqrt{3})^2}

\sf{=[(7)^2 - 2\times 7 \times 4\sqrt{3} + (4\sqrt{3})^2] - [(7)^2 + 2\times 7 \times 4\sqrt{3} + (4\sqrt{3})^2}

= \sf{[49 - 56\sqrt{3} + 48] - [49 + 56\sqrt{3} + 48]}

= \sf{49 - 56\sqrt{3} + 48 - 49 - 56\sqrt{3} - 48}

= \sf{\cancel{49} - 56\sqrt{3} + \cancel{48} - \cancel{49} - 56\sqrt{3} - \cancel{48}}

= \sf{-56\sqrt{3} - 56\sqrt{3}}

= \sf{-112\sqrt{3}}

Therefore,

The value of - is -1123.

______________________________________


amansharma264: Nycc
Similar questions