if x = 2√3+√2
y= 2√3-√2,
then find x4 - y4
Answers
Step-by-step explanation:
Given
x = 2√3+√2
y= 2√3-√2,
find x⁴ - y⁴
» we can write x⁴ - y⁴ as (x²)² - (y²)²
=> (x²-y²)*(x²+y²)........a²-b²=(a-b)*(a+b)
=> (x+y).(x-y)*(x²+y²)
-> ( x+y)² = x²+y² - 2xy
x²+y² = (x+y)² + 2xy
(x+y).(x-y)*[(x+y)² + 2xy]..........eq1
x+y = 4√3
x-y =2√2
(x+y)² => (4√3)²=>16*3=> 48
x*y = (2√3+√2)*(2√3-√2) => (4*3)-(2) => 12-2 = 10
puts the values in eq1
x⁴ - y⁴ = (x+y).(x-y)*[(x+y)² + 2xy]
= (4√3).(2√3)*[ 48 + 20]
= 24 * 68
= 1632
x⁴ - y⁴ = 1632
// please comment/message about this