If x= 2+√3, find the value of x-1/x.
Answers
Answered by
0
Answer:
2√3
Step-by-step explanation:
x = 2 + √3
1/x = 1 / ( 2 + √3 )
Rationalise by multiplying '2-√3' with numerator and denominator
⇒ 1/x = 1*(2 - √3)/(2 + √3)*(2 - √3)
= (2 - √3)/ 2² - (√3)² [∵ (a+b)(a-b) = a² - b²]
= (2 - √3) / 4 - 3 = 2 - √3
∴ x - 1/x = 2 + √3 - (2 - √3)
= 2 + √3 - 2 + √3
= 2√3
Answered by
0
Answer:
2√3
Step-by-step explanation:
x=2+√3
1/x=1/2+√3
by rationalising
1/x=1/2+√3*2-√3/2-√3
1/x=2-√3/(2)^2-(√3)^2
as{(a+b)(a-b)=a^2-b^2}
1/x=2-√3/4-3
1/x=2-√3
so,x-1/x=2+√3-(2-√3)
so,x-1/x=2+√3-2+√3
so,x-1/x=2√3
Similar questions