Math, asked by shagunmoharkar, 1 year ago

if x=2-√3, find the value of (x+1/x)^3+ 2(x+1/x)^2+ (x+1/x)-100

Answers

Answered by drgeetha2808
3

1/x=1/2-√3;

2+√3/(2)^2-(√3)^2;

2+√3/1;

x+1/x=2-√3+2+√3=4

So value of (x+1/x)^3+ 2(x+1/x)^2+ (x+1/x)-100 is (4)^3+ 2(4)^2+ (4)-100

64+32-96

96-96=0

Answered by Anonymous
18

\huge\underline\textsf{Answer:}

Given: x=2-\sf\sqrt{3}, then

 \frac{1}{x}  =  \frac{1}{2 -  \sqrt{3} } \\  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{(2 +  \sqrt{3)} }{(2 +  \sqrt{3)} }  \\    =  \frac{2 +  \sqrt{3} }{ {(2)}^{2}  - ( \sqrt{3} ) {}^{2} }  \\  \\  =   \frac{2 +  \sqrt{3} }{4 - 3}  \\  = 2 +  \sqrt{3}

•°• x+\sf\frac{1}{x}=(2-3)+(2+3)=4.

Now, x+\sf\frac{1}{x}³+2(x+\sf\frac{1}{x)}²+(x+\sf\frac{1}{x)}-100

= (4)³+2(4)²+4-100

= 64+32+4-100

=100-100

=0.

Similar questions