Math, asked by haseeb73, 1 year ago

if x=2-√3 find the value of x+1/x and x^2+1/x^2​

Answers

Answered by amankumaraman11
4

{ \textbf{ \huge{We  \:have, }}}

{ \boxed{ \boxed{ \blue{ \large{x = 2 -  \sqrt{3} }}}}} \\  \\ { \boxed{ \boxed{ \blue{ \large{ \frac{1}{x} =  >  \frac{1}{2 -  \sqrt{3} } =  >  > { \boxed{ \purple{2 +  \sqrt{3}}}}}}}}}

{ \text{ \huge{{Now, }}}}

{ \large{x +  \frac{1}{x}  =(2 -  \sqrt{3} ) + (2 +  \sqrt{3} ) }} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { \large{2 -  \sqrt{3} + 2 +  \sqrt{3}  }}\\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { \large{ \red{4}}}

{ \text{ \huge{And, </p><p>}}}

 { \large{{x}^{2}  +  \frac{1}{ {x}^{2} }  =  {(x +  \frac{1}{x} )}^{2} - 2 }} \\ \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { \large{ {(4)}^{2}  - 2}} \\ \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = { \large{16 - 2 ={ \red{ 14}}}}

{ \huge{ \textbf{Hence, }}}</p><p></p><p>

 { \huge{ \boxed{ \boxed{{{x}^{2}  +  \frac{1}{ {x}^{2} } = 14}}}}} \\  \\  { \huge{ \boxed{ \boxed{{x +  \frac{1}{x} = 4}}}}}

Similar questions