Math, asked by Georgephilip, 1 year ago

If x=2+√3 find the value of x^2+1/x^2

Answers

Answered by rational
33
The trick is to use the identityx^2+\frac{1}{x^2}=\left(x+\frac{1}{x}\right)^2-2

In view of using above identity, start by finding the value of x+\frac{1}{x} :
x=2+\sqrt{3}\\~\\\frac{1}{x}=\frac{1}{2+\sqrt{3}}=\frac{1}{2+\sqrt{3}}\times\frac{2-\sqrt{3}}{2-\sqrt{3}}=\frac{2-\sqrt{3}}{2^2-\sqrt{3}^2}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}

Adding these
x+\frac{1}{x}=2+\sqrt{3}+2-\sqrt{3}=4

Plug in the earlier identity and get
x^2+\frac{1}{x^2}=4^2-2=14
Similar questions