Math, asked by gopiv2710, 9 months ago

If x=2+√3, find the value of x²+1/x²​

Answers

Answered by Sudhir1188
7

ANSWER:

  • Value of the above expression = 14

GIVEN:

  • x = 2+√3

TO FIND:

  • x²+1/x²

SOLUTION:

=> x = 2+√3.

Finding 1/x :

 \implies \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }   \\  \\  \implies \:  \dfrac{1}{x}  =  \dfrac{1}{2 +  \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }    \\  \\  \implies \:  \dfrac{1}{x}  =  \dfrac{2 -  \sqrt{3} }{4 - 3} \\  \\  \implies \:  \dfrac{1}{x}   = 2 -  \sqrt{3}

Now finding :

= x²+1/x²

= (2+√3)²+(2-√3)²

= (2)²+(√3)²+2(2)(√3) + (2)²+(√3)²-2(2)(√3)

= 4+3+4√3 + 4+3-4√3

= 14

Value of the above expression = 14

NOTE:

Some important formulas:

(a+b)² = a²+b²+2ab

(a-b)² = a²+b²-2ab

(a+b)(a-b) = a²-b²

(a+b)³ = a³+b³+3ab(a+b)

Similar questions