if X=(2+✓3), find the value of(x²+1/x²)²
Answers
Answer:
196
Step-by-step explanation:
x = 2 + √3
∴ x² = ( 2 + √3)²
x² = (2)² + 2 (2) (√3) + (√3)²
x² = 4 + 3 + 4√3
x² = 7 + 4√3
Now,
1/x² = 1/ 7 + 4√3
..rationalizing
1/x² =
Finally,
(x²+1/x²)² = [(7 + 4√3) + (7 - 4√3)]²
= [ 7 + 7]²
= [ 14 ]²
= 196
(please consider me to mark as Brainliest)
Answer:
Step by step explanation:
Question:-
If x = 2 + √3, find the value of x² + 1/x²
To find:-
The value of x² + 1/x² = ?
Solution:-
Let's solve the problem
We have: x = 2+√3
∴ 1/x = 1/2+√3
The denominator is 2+√3. Multiplying the numerator and denomination by 2-√3, we get
➟ 1/2+√3 × 2-√3/2-√3
➟ 1(2-√3)/(2+√3)(2-√3)
⬤ Applying Algebraic Identity
(a+b)(a-b) = a² - b² to the denominator
We get,
➟ 2-√3 /(2)² - (√3)²
➟ 2 - √3 / 4 - 3
➟ 2 - √3 / 1
➟ 2 -√3
∴ x + 1/x = 2+√3 + 2-√3
x + 1/x = 2 + 2
x + 1/x = 4
Squaring on both sides we get,
(x + 1/x)² = (4)²
➟ x² + 2(x)(1/x) + (1/x)² = 16
➟ x² + 2 + 1/x² = 16
➟ x² + 1/x² = 16 - 2
➟ x² + 1/x² = 14
Answer:-
Hence, the value of x² + 1/x² = 14.
Used Formulae:-
(a+b)(a-b) = a² - b²
:)