If x=2+√3, the value of x+1/x is
Answers
Answered by
3
Answer:
Given : x=2+3x=2+\sqrt{3}x=2+
3
To Find : find the value of x+1xx+\frac{1}{x}x+
x
1
Solution:
x+1xx+\frac{1}{x}x+
x
1
Since x=2+3x=2+\sqrt{3}x=2+
3
To find 1x\frac{1}{x}
x
1
x=2+3x=2+\sqrt{3}x=2+
3
1x=2−3(2)2−(3)2\frac{1}{x} =\frac{2 -\sqrt{3} }{(2) {}^{2} - ( \sqrt{3}) {}^{2} }
x
1
=
(2)
2
−(
3
)
2
2−
3
1x=2−34−3\frac{1}{x}= \frac{2 -\sqrt{3}}{4 - 3}
x
1
=
4−3
2−
3
1x=2−3\frac{1}{x}= 2- \sqrt{ 3}
x
1
=2−
3
Substitute the values
x+1xx+\frac{1}{x}x+
x
1
2+3+2−32+\sqrt{3}+2- \sqrt{ 3}2+
3
+2−
3
444
Hence the value of x+1xx+\frac{1}{x}x+
x
1
is 4
Similar questions