Math, asked by yogoloy426, 8 months ago

If x = 2 - √3, then find the value of ( x + 1/x )^3

Answers

Answered by Anonymous
8

Solution

Given :-

  • x = (2 - √4)

Find :-

  • Value of ( x + 1/x)³

Explanation

Using Formula

( a + b)³ = a³ + b³ + 3a²b + 3ab²

First Calculate 1/x

==> 1/x

keep Value of x

==> 1/(2-√3)

Rationalize denominator

==> (2+√3)/(2-√3)(2+√3)

==> (2+√3)/(2²-√3²)

==> (2+√3)/(4-3)

==> (2+√3)

Now, Calculate ( x + 1/x)

==> ( x + 1/x)

keep Value of x

==> [ (2-√3) + (2+√3)]

==> 4

Now, Calculate ( x + 1/x)³

==> ( x + 1/x)³

Keep Value of ( x + 1/x)

==> (4)³

==> 64

Hence

  • Value of ( x + 1/x)³ be = 64

________________

Answered by Anonymous
4

\huge{\underline{\sf{\blue{ANSWER}}}}

GIVEN:-

  • If x =  2-\sqrt{3}

TO FIND:-

  • The value of  x+\frac{1}{x^3}

EXPLANATION-:

  • if we have to find the value of  x+\frac{1}{x^3} then we have to find the value of \frac{1}{x}

FORMULA USED:-

  • Rationalising.

\implies{x=2-\sqrt{3}}

\implies{\frac{1}{x}=\frac{1}{2-\sqrt{3}}}

\implies{\frac{1}{2-\sqrt{3}}×\frac{2+\sqrt{3}}{2+\sqrt{3}}}

  • After rationalising it we get \frac{1}{x}  2+\sqrt{3}

Now,

Put the values..

\implies{x+\frac{1}{x}}

\implies{2-\sqrt{3}+2+\sqrt{3}}

\implies{4}

The value of \huge{x+\frac{1}{x}\:is\:4}

Atq.

\implies\huge{(x+\frac{1}{x})^3=4^3}

\implies\huge{x^3+\frac{1}{x^3}=64}

●●SOME EXTRA INFORMATION●●

 (a+b)^2=a^2+b^2+2ab

 (a-b)^2=a^2-2ab+b^2

 a^3+b^3=(a+b) (a^2-ab+b^2)

Similar questions