Math, asked by pinkbeauty, 11 months ago

if x=2-√3,then find value of x^2 - 1÷x^2

Answers

Answered by Anonymous
1

Given that,

 \sf{x  = 2 -  \sqrt{3} }

Now,

 \sf{ \frac{1}{x} =  \frac{1}{2 -  \sqrt{3} }  =  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} }   =  \frac{2 +  \sqrt{3} }{2 {}^{2} -  \sqrt{3 {}^{2} }  }   = 2 +  \sqrt{3} } \\  \\

To find the value of,

 \sf{x {}^{2}  -  \frac{1}{x {}^{2} } } \\  \\

It is of the form,

a² - b²=(a+b)(a-b)

Here,

 \sf{a = x \:  \: and \:  \: b =  \frac{1}{x} } \\

Putting the values,

x²-1/x²

=(x+1/x)(x-1/x)

=[(2- √3)+(2+√3)][(2- √3)-(2+√3)]

=(4)(-2√3)

= -8√3

The required value is -8√3

Similar questions