Math, asked by aaftaab, 1 year ago

If x = 2 - √3, then the value of  x² + 1/x² and x² - 1/x² is ?

Answers

Answered by Anonymous
9
x = 2-√3 ⇒ 1/x = 2+√3. Then you have, x²+1/x²=(x+1/x)²-2=14. And x²-1/x² = (x+1/x)(x-1/x) =-8√3
Answered by BrainlyQueen01
34
Hey mate ^_^

_______________________

Given :

x = 2 - √3

To find :

x² + 1 / x²

x² - 1 / x²

Solution ;

x = 2 - √3

⇒ 1 / x = 1 / 2 - √3 × 2 + √3 / 2 + √3

⇒ 1 / x = 2 + √3 / 2² - √3²

⇒ 1 / x = 2 + √3 / 4 - 3

⇒ 1 / x = 2 + √3

Now,

x + 1 / x = 2 - √3 + 2 + √3

⇒ x + 1 / x = 2 + 2

⇒ x + 1 / x = 4

And, on squaring both sides.

( x + 1 / x ) ² = (4)²

⇒ x² + 1 / x² + 2 = 16

⇒ x² + 1 / x² = 16 - 2

⇒ x² + 1 / x² = 14.

Again

x² = ( 2 - √3 )²

⇒ x² = 2² + √3² - 2 * 2 * √3

⇒ x² = 4 + 3 - 4√3

⇒ x² = 7 - 4√3

And


⇒ 1 / x² = ( 2 + √3 ) ²

⇒ 1 / x² = 2² + √3² + 2 * 2 * √3

⇒ 1 / x² = 4 + 3 + 4√3

⇒ 1 / x² = 7 + 4√3

Now,

x² - 1 / x² = 7 - 4√3 - 7 - 4√3

x² - 1 / x² = - 4√3 - 4√3

x² - 1 / x² = - 8√3

Hence,

x² + 1 / x² = 14.

x² - 1 / x² = - 8√3

_______________________

Thanks for the question!

☺️☺️☺️
Similar questions