Math, asked by diptijaveri4372, 1 year ago

If x=(2+√3) then value of (√x +1/√x)=? (A) √3 (B) √6 (c)2√6 (d)6

Answers

Answered by rishu6845
8

Answer:

b) \:  \:  \:  \sqrt{6}

Step-by-step explanation:

Given---->

x \:  = ( \: 2 \:  +  \:  \sqrt{3}  \: )

To find ---->

value \: of \: ( \:  \sqrt{x} \:  +  \:  \dfrac{1}{ \sqrt{x} } \: )

Concept used---->

 {( \: a \:  +  \: b \: )}^{2}  \:  =  {a}^{2} \:  +  \:  {b}^{2} \:  +  \: 2 \: a \: b

Solution----->

now

x \:  =  \: ( \: 2 \:   +  \:  \sqrt{3}  \: )

 =  >  \dfrac{1}{x} \:  =  \dfrac{1}{( \: 2 \:  +  \:  \sqrt{3} \: ) }

 =  \dfrac{1 \: ( \: 2 \:  -  \:  \sqrt{3} \: ) }{( \: 2 \:   +  \:  \sqrt{3} \: ) \: ( \: 2 \:  -  \:  \sqrt{3} \: )  }

 =  \dfrac{( \: 2 \:  -  \:  \sqrt{3} \: ) }{ {( \: 2 \: )}^{2} \:  -  \:  {( \:  \sqrt{3} \: ) }^{2}  }

 =  \dfrac{( \: 2 \:  -  \:  \sqrt{3} \: ) }{( \: 4 \:  -  \: 3 \: )}

 =  \dfrac{2 \:  -  \:  \sqrt{3} }{1}

 = 2 \:  -  \:  \sqrt{3}

now

 {( \:  \sqrt{x} \:  +  \dfrac{1}{ \sqrt{x} }  \: ) }^{2}  =  { ( \: \sqrt{x} \: ) }^{2}  \:  +  {( \:  \dfrac{1}{ \sqrt{x} } \: ) }^{2} \:  + 2 \: ( \:  \sqrt{x} \: ) \: ( \:  \dfrac{1}{ \sqrt{x} } \: )

 \:  \:  \:  = x \:  +  \dfrac{1}{x}  \:  +  \: 2

 \:  \:  \:  = ( \: 2 \:  +  \:  \sqrt{3}  \: )  + \: ( \: 2 \:  -  \:  \sqrt{3}  \: ) \:  +  \: 2

  =  >  \:  {( \:  \sqrt{x} \:   +  \dfrac{1}{ \sqrt{x} } \: )  }^{2}   = 6

 taking \: square \: root \: of \: both \: sides \:

 =  >  \sqrt{x}  +  \dfrac{1}{ \sqrt{x} } \:  =  \sqrt{6}

Answered by Anonymous
0

\huge\boxed{\fcolorbox{violet}{violet}{Answer}}

Attachments:
Similar questions