If x=2-√3 then (x+1/x)^2 is
Answers
Answered by
1
If x=2-√3 then (x+1/x)^2 is 4
Step-by-step explanation:
(2-√3 + 2+√3)
4
Answered by
0
Step-by-step explanation:
x=2-√3
x=2+
3
To find :
x + \frac{1}{x}x+
x
1
Solution :
\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3} \end{gathered}
x=2+
3
x
1
=
2+
3
1
×
2−
3
2−
3
x
1
=
(2)
2
−(
3
)
2
2−
3
x
1
=
4−3
2−
3
x
1
=2−
3
Now,
\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}
x+
x
1
=2+
3
+2−
3
=2+2
=4
Similar questions