Math, asked by sdinbandhu186, 2 months ago

If x=2-√3 then (x+1/x)^2 is​

Answers

Answered by Anonymous
1

If x=2-√3 then (x+1/x)^2 is 4

Step-by-step explanation:

( x  +  \frac{1}{x} ) ^{2}

(2 -  \sqrt{3}  +  \frac{1}{2 -  \sqrt{3} } )

(2 -  \sqrt{3  }  +  \frac{1}{2 -  \sqrt{3} }  \times  \frac{2 +  \sqrt{3} }{2 +  \sqrt{3} } )

(2 -  \sqrt{3}  +  \frac{2 +  \sqrt{3} }{ {2}^{2} - ( \sqrt{3} )^{2}  } )

(2 -  \sqrt{3}  +  \frac{2 +  \sqrt{3} }{ {4} - 3})

(2-√3 + 2+√3)

4

Answered by kshitijkumar78
0

Step-by-step explanation:

x=2-√3

x=2+

3

To find :

x + \frac{1}{x}x+

x

1

Solution :

\begin{gathered}x = 2 + \sqrt{3} \\ \\ \frac{1}{x} = \frac{1}{2 + \sqrt{3} } \times \frac{2 - \sqrt{3} }{2 - \sqrt{3} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{(2) {}^{2} - ( \sqrt{3} ) {}^{2} } \\ \\ \frac{1}{x} = \frac{2 - \sqrt{3} }{4 - 3} \\ \\ \frac{1}{x} = 2 - \sqrt{3} \end{gathered}

x=2+

3

x

1

=

2+

3

1

×

2−

3

2−

3

x

1

=

(2)

2

−(

3

)

2

2−

3

x

1

=

4−3

2−

3

x

1

=2−

3

Now,

\begin{gathered}x + \frac{1}{x} \\ \\ = 2 + \sqrt{3} + 2 - \sqrt{3} \\ \\ = 2 + 2 \\ \\ = 4\end{gathered}

x+

x

1

=2+

3

+2−

3

=2+2

=4

Similar questions