History, asked by kaushalkishorkumar, 10 months ago

If x=2+3 (under root)2, find the value of (x+4/x)

Answers

Answered by BrainlyPopularman
20

QUESTION :

▪︎ If  \:  \: { \bold{x = 2 +  3\sqrt{2} }} \:  \: , then find the value of  \:  \: { \bold{x  +  \dfrac{4}{x} = ? }} \:  \:

ANSWER :

GIVEN :

  \\ \:  \:{ \huge{. \:  \:  \: }} { \bold{x = 2 +  3\sqrt{2} }} \:  \:  \\

TO FIND :

  \\ \:  \:{ \huge{. \:  \:  \: }} { \bold{x  +  \dfrac{4}{x} = ?  }} \:  \:  \\

SOLUTION :

▪︎ First we have to find  \:  \: { \bold{ \dfrac{1}{x}   \:  \:  - }} \:  \: \\

• So that –

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{1}{2 + 3 \sqrt{2} } }} \:  \: \\

• Now rationalization –

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{1}{2 + 3 \sqrt{2} }  \times  \dfrac{2 - 3 \sqrt{2} }{2 - 3 \sqrt{2} } }} \:  \: \\

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{2 - 3 \sqrt{2} }{(2 + 3 \sqrt{2} )(2 - 3 \sqrt{2} )} }} \:  \: \\

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{2 - 3 \sqrt{2} }{ {(2)}^{2}  -  {(3 \sqrt{2} )}^{2} } \:  \:  \:  \:  \: [ \because \:  \: (a + b)(a - b) =  {a}^{2} -  {b}^{2}  ]}} \:  \: \\

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{2 - 3 \sqrt{2} }{ 4 - 18 } }} \:  \: \\

  \\   \implies { \bold{ \dfrac{1}{x}   =  \dfrac{2 - 3 \sqrt{2} }{ - 14} }} \:  \: \\

• Now –

  \\   \implies { \bold{x +  \dfrac{4}{x}   = 2 + 3 \sqrt{2}   + 4(\dfrac{2 - 3 \sqrt{2} }{ - 14}) }} \:  \: \\

  \\   \implies { \bold{x +  \dfrac{4}{x}   = 2 + 3 \sqrt{2}   +  \dfrac{6}{7} \sqrt{2}   -  \dfrac{4}{7}  }} \:  \: \\

  \\   \implies \large { \red{ \boxed{ \bold{x +  \dfrac{4}{x}   =  \frac{10}{7}  +  \frac{27 \sqrt{2} }{7}  }}}} \:  \: \\

Similar questions