If x 2 -3x+2 is a factor of polynomial x 4 -ax 3 +b, then find the value of a and b
Answers
Answered by
13
x²-3x + 2
= x²- 2x -1x + 2
= x(x-2) -1 (x-2)
= (x-1).(x-2)
x-2 = 0 (remainder theorem)
x=2
x⁴-ax³+ b =0
2⁴-2³a + b =0
16-8a + b =0
8a-b = 16.............. eq. I
x-1 =0 (remainder theorem)
x=1
x⁴-ax³+b =0
1⁴ - 1³a + b =0
1 - a + b = 0
a-b = 1................eq. II
8a-b = 16
- a-b = 1
- + -
___________
7a = 15
a= 15 ÷ 7
a = 2.14285714
a = 2.14
a-b =1
a-1 =b
b = 2.14-1
b =1.14
8a-b =16
8(2.14) -16 =b
b = 8[ (2.14)-2 ]
b = 8 (0.14)
b = 1.12
= x²- 2x -1x + 2
= x(x-2) -1 (x-2)
= (x-1).(x-2)
x-2 = 0 (remainder theorem)
x=2
x⁴-ax³+ b =0
2⁴-2³a + b =0
16-8a + b =0
8a-b = 16.............. eq. I
x-1 =0 (remainder theorem)
x=1
x⁴-ax³+b =0
1⁴ - 1³a + b =0
1 - a + b = 0
a-b = 1................eq. II
8a-b = 16
- a-b = 1
- + -
___________
7a = 15
a= 15 ÷ 7
a = 2.14285714
a = 2.14
a-b =1
a-1 =b
b = 2.14-1
b =1.14
8a-b =16
8(2.14) -16 =b
b = 8[ (2.14)-2 ]
b = 8 (0.14)
b = 1.12
Answered by
4
If x 2 -3x+2 is a factor of polynomial x 4 -ax 3 +b, then find the value of a and b
1
SEE
x²-3x + 2
= x²- 2x -1x + 2
= x(x-2) -1 (x-2)
= (x-1).(x-2)
x-2 = 0 (remainder theorem)
x=2
x⁴-ax³+ b =0
2⁴-2³a + b =0
16-8a + b =0
8a-b = 16.............. eq. I
x-1 =0 (remainder theorem)
x=1
x⁴-ax³+b =0
1⁴ - 1³a + b =0
1 - a + b = 0
a-b = 1................eq. II
8a-b = 16
- a-b = 1
- + -
___________
7a = 15
a= 15 ÷ 7
a = 2.14285714
a = 2.14
a-b =1
a-1 =b
b = 2.14-1
b =1.14
8a-b =16
8(2.14) -16 =b
b = 8[ (2.14)-2 ]
b = 8 (0.14)
b = 1.12
Similar questions