Math, asked by angadprasad06, 7 months ago

if X=2-√5/2+√5 , and 2+√5/2-√5 ,find the value of x^2-y^2

Answers

Answered by aryan073
2

Step-by-step explanation:

 {x}^{2}  -  {y}^{2}  = to \: find

x =  \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }  \: and \: y =  \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }

( {x}^{2}  -  {y}^{2} )

 = (  { \frac{2 -  \sqrt{5} }{2 +  \sqrt{5} }) }^{2}  - ( {( \frac{2 +  \sqrt{5} }{2 -  \sqrt{5} }  )}^{2}

 =  \frac{4  + 5 - 4 \sqrt{5} }{4 + 5 + 4 \sqrt{5} }  -  \frac{4 + 5 + 4 \sqrt{5} }{4  + 5 - 4 \sqrt{5} }

 =  \frac{9  - 4 \sqrt{5} }{9 + 4 \sqrt{5} }  - ( \frac{9 + 4 \sqrt{5} }{9 - 4 \sqrt{5} } )

by \: cross \: multiplication

 \frac{9(9 - 4 \sqrt{5} ) - 4 \sqrt{5}(9 - 4 \sqrt{5}) \:  - (9(9 +  4\sqrt{5}) +4 \sqrt{5}(9 +  \sqrt{5}   )   }{81 - 80}

 \frac{81 - 36 \sqrt{5} - 36 \sqrt{5}   + 80 - (81 + 36 \sqrt{5}  + 36 \sqrt{5}  + 180)}{1}

161 - 72 \sqrt{5}  - (261 + 72 \sqrt{5} )

161 - 72 \sqrt{5}  - 261 - 72 \sqrt{5}

 - 422 - 144 \sqrt{5 }  \: is \: the \: required \: answer

u can also use (x-y) (x+y) by using this u get 4root5 OK friend this is urs answer

Similar questions