Math, asked by varsharekhe, 1 month ago

if x=2+√5, find the value of x² - 1/x²​

Answers

Answered by pd180654
0

Answer:

\underline{\bold{Given:-}}

Given:−

x = \sqrt{5} + 2x=

5

+2

\underline{\bold{To\:find:-}}

Tofind:−

\begin{gathered} {x}^{2} + \frac{1}{ {x}^{2} } \\ \end{gathered}

x

2

+

x

2

1

\underline{\bold{Solution:-}}

Solution:−

\begin{gathered}x = \sqrt{5} + 2 \\ \\ \frac{1}{x} = \frac{1}{ \sqrt{5} + 2 } \\ \\ \bold{On \: rationalising \: them} \\ \\ \frac{1}{x} = \frac{1}{ \sqrt{5} + 2 } \times \frac{ \sqrt{5} - 2}{ \sqrt{5} - 2}\\ \end{gathered}

x=

5

+2

x

1

=

5

+2

1

Onrationalisingthem

x

1

=

5

+2

1

×

5

−2

5

−2

\begin{gathered}\bold{Using \: identity } \\ \end{gathered}

Usingidentity

\begin{gathered}\bold {{a}^{2} - {b}^{2} = (a + b)(a - b)}\\ \\ \frac{1}{x} = \frac{ \sqrt{5} - 2 }{ { (\sqrt{5}) }^{2} - {2}^{2} } \\ \\ \frac{1}{x} = \frac{ \sqrt{5} - 2 }{5 - 4} \\ \\ \frac{1}{x} = \sqrt{5} - 2 \\ \end{gathered}

a

2

−b

2

=(a+b)(a−b)

x

1

=

(

5

)

2

−2

2

5

−2

x

1

=

5−4

5

−2

x

1

=

5

−2

Now,

\begin{gathered}x + \frac{1}{x} = \sqrt{5} + 2 + \sqrt{5} - 2 \\ \\ x + \frac{1}{x} = 2 \sqrt{5} \\ \\ \bold{On \: squaring \: both \: sides} \\ \\ {(x + \frac{1}{x}) }^{2} = {(2 \sqrt{5} )}^{2} \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 \times x \times \frac{1}{x} = 4 \times 5 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } + 2 = 20 \\ \\ {x}^{2} + \frac{1}{ {x}^{2} } = 20 - 2 \\ \\\boxed{\bold{ {x}^{2} + \frac{1}{ {x}^{2} } = 18}}\end{gathered}

x+

x

1

=

5

+2+

5

−2

x+

x

1

=2

5

Onsquaringbothsides

(x+

x

1

)

2

=(2

5

)

2

x

2

+

x

2

1

+2×x×

x

1

=4×5

x

2

+

x

2

1

+2=20

x

2

+

x

2

1

=20−2

x

2

+

x

2

1

=18

⭐Hope it may help you⭐

Similar questions