Math, asked by Divyanshu180120005, 9 months ago

If x= 2 + √5 , find the value of x2-1/x2
)
(A) 2√5
(B) 4√5
(C) 6√5
(D) 8√5​

Answers

Answered by ItzArchimedes
33

Solution :-

Given ,

x = 2 + √5

We need to find ,

x² - (1/x²)

Firstly finding & 1/

x = 2 +√5

Squaring on both sides

→ x² = (2 + √5)²

→ x² = 2² + (√5)² + 2(2)(√5)

→ x² = 4 + 5 + 4√5

→ x² = 9 + 4√5

Now , finding 1/x²

→ 1/x² = 1/9 + 4√5

______________________

Now , finding the question

→ (9 + 4√5) - [1/(9 + 4√5)]

→ [(9 + 4√5)² - 1/(9 + 4√5)]

→ 9² + 16(5) - 1/ 9 + 4√5

→ 18 + 80 - 1/9 + 4√5

→ 97/9 + 4√5

Hence , - 1/ = 97/9 + 45.

Answered by Anonymous
100

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\\

\huge\sf\red{Given \::-}

  • \large\sf\orange{x\:= \:2 +\sqrt{5}}

\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\\

\huge\sf\red{To\:Find \::-}

  • \large\sf\orange{x^{2} -\bigg(\dfrac{1}{x^{2}}\bigg)}

\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

\\

\huge\sf\red{Solution\::-}

\\

\large\sf\underline\blue{At\: first,\:We \:find\: x^{2} \:\&\:\dfrac{1}{x^2}}

\\

→\:\sf\purple{x\:= \:2\: +\sqrt{5}}

\sf\gray{(Squaring\: on\:both\:sides)}

\\

→\:\sf\green{x^2 \:= \:(2 \:+\sqrt{5})^2 }

\\

→\:\sf\purple{x^2 \:=\: 2^{2} \:+\:(\sqrt{5})^{2}\:2(2)(\sqrt{5})}

\\

→\:\sf\green{x^2 \:= \:4\:+\:5\:+\:4\sqrt{5}}

\\

→\:{\boxed{\sf{\purple{x^{2}\:=\:9\:+\:4\sqrt{5}}}}}

\\

\sf\underline\orange{Putting\:x^{2}\:value\:in\:\frac{1}{x^2}}

\\

\mapsto\:\sf\purple{\dfrac{1}{x^2}}

\\

\mapsto\:\sf\green{\dfrac{1}{9\:+\:4\sqrt{5}^2} }

\\

\sf\underline\orange{Now, Finding\:the\:value\: x^{2} -\bigg(\dfrac{1}{x^{2}}\bigg)  }

\\

\hookrightarrow\:\sf\blue{(9\:+\:4\sqrt{5})\:-\:\bigg( \dfrac{1}{9\:+\:4\sqrt{5}} \bigg)}

\\

\hookrightarrow\:\sf\gray{9^{2}\:+\:16(5) \:-\: \dfrac{1}{9\:+\:4\sqrt{5}} }

\\

\hookrightarrow\:\sf\blue{18\:+\:80\:-\:\dfrac{1}{9\:+\:4\sqrt{5}} }

\\

\hookrightarrow\:{\boxed{\sf{\pink{\dfrac{97}{9\:+\:4\sqrt{5}}}}} }

\\

\Large\sf\orange{Hence,}

\star\:\sf\red{The \ value \ of \ x^{2} -\bigg(\dfrac{1}{x^{2}}\bigg) \: is \: \dfrac{97}{9\:+\:4\sqrt{5}}}

\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions