if (x-2) and ( x+3) are factor of x3 + ax2 +bx -30, find a and b
Answers
Answered by
2
Step-by-step explanation:
If ab = 0 and a × b = ab
then either a or b equals to 0.
x-2 = 0
=》x = 2
Putting this value in the equation we get
2³ + 2²a + 2b - 30 = 0
=》 8 +4a+2b-30 = 0
=》 4a+2b = 22
= 》 2a+b = 11 ................................Eq (1)
or
x+3 = 0
=》 x = -3
(-3)³ + (-3)²a + (-3)b -30 = 0
=》-27 + 9a - 3b - 30 = 0
=》 9a - 3b = 57
=》 3a - b = 19 ...............................Eq (2)
Eq (1) + Eq (2) gives
5a = 30
=》 a = 6
putting the value of a in Eq (1) we get
2×6+b = 11
=》b = 11 - 12 = -1
Similar questions