Math, asked by vanshikashrivastav82, 4 months ago

If (x-2) and (x+3) is a factor of x3+ax2+bx-30, find a and b?​

Answers

Answered by amansharma264
16

EXPLANATION.

(x - 2) & (x + 3) is a factor of the equation,

⇒ x³ + ax² + bx - 30.

As we know that,

(x - 2) is a factor of the polynomial,

⇒ x - 2 = 0.

⇒ x = 2.

put the value of x = 2 in equation, we get.

⇒ x³ + ax² + bx - 30.

⇒ (2)³ + a(2)² + b(2) - 30 = 0.

⇒ 8 + 4a + 2b - 30 = 0.

⇒ 4a + 2b - 22 = 0.

⇒ 2(2a + b - 11) = 0.

⇒ 2a + b - 11 0.

⇒ b = 11 - 2a. ⇒ (1).

(x + 3) is a factor of the polynomial

⇒ x + 3 = 0.

⇒ x = -3.

Put the value of x = -3 in equation, we get.

⇒ (-3)³ + a(-3)² + b(-3) - 30 = 0.

⇒ -27 + 9a - 3b - 30 = 0.

⇒ 9a - 3b - 57 = 0.

⇒ 3(3a - b - 19) = 0.

⇒ 3a - b - 19 = 0. ⇒ (2).

From equation (1) & (2) we get.

Put the value of equation (1) in equation (2), we get.

⇒ 3a - (11 - 2a) - 19 = 0.

⇒ 3a - 11 + 2a - 19 = 0.

⇒ 5a - 30 = 0.

⇒ 5a = 30.

⇒ a = 6.

Put the value of a = 6 in equation (1), we get.

⇒ b = 11 - 2a.

⇒ b = 11 - 2(6).

⇒ b = 11 - 12.

⇒ b = -1.

Value of a = 6 & b = -1.

Answered by BrainlyMan05
25

Answer:

a = 6

b = -1

Step-by-step explanation:

Question:

If (x-2) and (x+3) is a factor of x^3+ax^2+bx-30, find a and b?

Solution:

(x-2)(x+3)

x-2=0 and x+3=0

x = 2 and x = -3

Now,

f(x) = x^3+ax^2+bx-30

f(2) = 2^3+2^2a+2b-30

f(2) = 8+4a+2b-30 = 0

4a + 2b = 22

2(2a+b) = 2(11)

2a+b = 11

Let it be first equation....

f(-3) = (-3)^3+(-3)^2a-3b-30 = 0

-27+9a-3b-30 = 0

9a-3b-57 = 0

9a-3b = 57

3a-b = 19

Let it be second equation:

Adding first and second equation:

2a+b+3a-b = 11+19

5a = 30

a = 6

So,

3a-b = 19

3(6) -b = 19

18 - b = 19

b = -1

Final answer:

a = 6

b = -1

Similar questions