Math, asked by mehrishmirza06, 4 months ago

If (x+2) and (x-4) are the factors of x³ +tx²+ ux +64. Find the values of t and u​

Answers

Answered by Anonymous
116

Given :

  • (x+2) and (x-4) are the factors of x³ +tx²+ ux +64.

To find :

  • Value of t & u

Solution :

If (x+2) and (x-4) are the factors of x³ +tx²+ ux +64 then, x³ +tx²+ ux +64 must be equal to zero

°•° (x + 2) is the factor of x³ + tx²+ ux +64

→ x + 2 = 0

→ x = - 2

Substitute the value

→ x³ +tx²+ ux + 64 = 0

→ (-2)³ + t × (-2)² + u × (-2) + 64 = 0

→ - 8 + 4t - 2u + 64 = 0

→ 4t - 2u + 64 - 8 = 0

→ 4t - 2u = - 56 -----(i)

°•° (x - 4) is the factor of x³ + tx²+ ux +64

→ x - 4 = 0

→ x = 4

Substitute the value

→ x³ +tx²+ ux +64 = 0

→ (4)³ + t × (4)² + u × 4 + 64 = 0

→ 64 + 16t + 4u + 64 = 0

→ 16t + 4u + 64 + 64 = 0

→ 16t + 4u + 128 = 0

→ 16t + 4u = - 128 ----(ii)

Multiply (i) by 2 and (ii) by 1

  • 8t - 4u = - 112
  • 16t + 4u = - 128

Add both the equations

→ 8t - 4u + 16t + 4u = - 112 + (-128)

→ 24t = - 112 - 128

→ 24t = - 240

→ t = - 240/24

→ t = - 10

Put the value of t in eqⁿ (i)

→ 4t - 2u = - 56

→ 4 × (-10) - 2u = - 56

→ - 40 - 2u = - 56

→ - 2u = - 56 + 40

→ - 2u = - 16

→ u = 16/2

→ u = 8

  • Value of t = - 10
  • Value of u = 8

________________________________

Answered by darksoul3
13

\huge \fbox \red{Answer}

(x + 2) is the factor of x³ + tx²+ ux +64

→ x + 2 = 0

→ x = - 2

Substitute the value

→ x³ +tx²+ ux + 64 = 0

→ (-2)³ + t × (-2)² + u × (-2) + 64 = 0

→ - 8 + 4t - 2u + 64 = 0

→ 4t - 2u + 64 - 8 = 0

→ 4t - 2u = - 56 -----(i)

°•° (x - 4) is the factor of x³ + tx²+ ux +64

→ x - 4 = 0

x = 4

Substitute the value

→ x³ +tx²+ ux +64 = 0

→ (4)³ + t × (4)² + u × 4 + 64 = 0

→ 64 + 16t + 4u + 64 = 0

→ 16t + 4u + 64 + 64 = 0

→ 16t + 4u + 128 = 0

→ 16t + 4u = - 128 ----(ii)

Multiply (i) by 2 and (ii) by 1

8t - 4u = - 112

16t + 4u = - 128

Add both the equations

→ 8t - 4u + 16t + 4u = - 112 + (-128)

→ 24t = - 112 - 128

→ 24t = - 240

→ t = - 240/24

t = - 10

___________________

Put the value of t in eqⁿ (i)

→ 4t - 2u = - 56

→ 4 × (-10) - 2u = - 56

→ - 40 - 2u = - 56

→ - 2u = - 56 + 40

→ - 2u = - 16

→ u = 16/2

u = 8

___________________

Value of t = - 10

Value of t = - 10Value of u = 8

Similar questions