Math, asked by kajalkumari4632, 9 months ago

If x = -2 and y = 1, by using an identity find the value of the following:
(i) (4y²–9x²) (16y⁴+36x²y²+81x⁴)
(ii) (2/x - x/2)(4/x² + x²/4 + 1)
(iii)(5y + 15/y)(25y² - 75 + 225/y²)

Answers

Answered by nikitasingh79
10

Concept :

By using an identity :  

a³ + b³ = (a + b)(a² + b² - ab)

a³ - b³ = (a - b)(a² + b² + ab)

 

 

Given:

(i) (4y² - 9x²) (16y⁴ + 36x²y² + 81x⁴)

= (4y² - 9x²) [(4y²)² + 9x² × 4y² + (9x²)²)

= (4y²)³ - (9x²)³

= 64y⁶ - 729x⁶

On putting x = -2 and y = 1 , we obtain :  

= 64(1)⁶ - 729(-2)⁶

= 64 - 729 × 64

= 64 - 46656

= - 46592

Hence, the value of  (4y² - 9x²) (16y⁴ + 36x²y² + 81x⁴) is - 46592

(ii) (2/x - x/2)(4/x² + x²/4 + 1)

= (2/x - x/2)[(2/x)² + (x/2)² + 2/x × x/2]

= (2/x)³ - (x/2)³

= 8/x³ - x³/8

On putting x = -2 , we obtain :  

= 8/(-2)³ - (-2)³/8

= 8/-8 - (-8/8)

= - 1 + 1

= 0

Hence, the value of (2/x - x/2)(4/x² + x²/4 + 1) is 0.

(iii) (5y + 15/y)(25y² - 75 + 225/y²)

 = (5y + 15/y)[(5y)² - 5y × 15/y + (15/y)²]

= (5y)³ + (15/y)³

= 125y³ + 3375/y³

On putting y = 1 , we obtain :  

= 125 (1)³ + 3375/(1)³

= 125 + 3375

= 3500

Hence, the value of (5y + 15/y)(25y² - 75 + 225/y²) is 3500.

HOPE THIS ANSWER WILL HELP YOU……

 

Some more questions :  

If a+b=8 and ab=6, find the value of a³+b³.

https://brainly.in/question/15897806

 

Find the following products:

(i) (3x+2y)(9x²-6xy+4y²)

(ii) (4x-5y)(16x²+20xy+25y²)

(iii) (7p⁴+q)(49p⁸-7p⁴q+q²)

(iv) (x/2 + 2y)(x²/4 - xy +4y²)

(v) (3/x - 5/y)(9/x² + 25/y² + 15/xy)…..

https://brainly.in/question/15897803

Answered by Anonymous
5

Step-by-step explanation:

(2/x - x/2)(4/x² + x²/4 + 1)

= (2/x - x/2)[(2/x)² + (x/2)² + 2/x × x/2]

= (2/x)³ - (x/2)³

= 8/x³ - x³/8

On putting x = -2 , we obtain :  

= 8/(-2)³ - (-2)³/8

= 8/-8 - (-8/8)

= - 1 + 1

= 0

Similar questions