if x-2 is a factor of x^3+px^2+qx+16 and p-q=18,find the value of p and q?
Answers
Step-by-step explanation:
x-2 is a factor, x = 2
p-q = 18
p=18+q
x³ + px² + qx + 16 =0
2³ + p(2)² + q(2) + 16 = 0
8 + (18 + q)4 + 2q + 16 = 0
8 + 72 + 4q + 2q + 16 =0
80 + 6q + 16 = 0
6q + 96 = 0
6q = -96
q = -96/6
q=-16
p = 18 + q
= 18+(-16) = 18-16 ==> p = 2
Answer:
Step-by-step explanation:
Let f ( x ) = x³ + px² + qx + 16 = 0
If ( x - 2 ) is a factor of f( x ),then x = 2.
On substituting ,
f ( 2 ) = ( 2 )³ + p ( 2 )² + q ( 2 ) + 16 = 0
⇒ 8 + 4p + 2q + 16 = 0
⇒ 24 + 4p + 2q = 0
⇒ 12 + 2p + q = 0 ( ∵ taken by 2 as common )
⇒ 2p + q = - 12-------eq ( 1 ) (say )
Let p - q = 18--------eq ( 2 )
Now adding eq( 1 ) + eq ( 2 ) ,we get
2p + q + p - q = - 12 + 18
3p = 6
p = 6/3 = 2.
Now, substituting p = 2 in the eq ( 1 ) , we have
2( 2 ) + q = - 12
4 + q = - 12
p = - 12 - 4 = - 16
∴ The values of p and q are 2 and - 16.