Math, asked by noornida07, 2 months ago

if x=2+root 3 find the value of x square-1/x square​

Answers

Answered by Anonymous
1

Step-by-step explanation:

Here is your solution

Given :-

x=2+√3

Now

\begin{gathered} \frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 -\sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\ \end{gathered}

x

1

=

2+

3

1

×

2−

3

2−

3

x

1

=

2

2

−(

3

)

2

2+

3

x

1

=

4−3

2+

3

x

1

=2−

3

\begin{gathered} x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14\end{gathered}

x+

x

1

=2−

3

+2+

3

x+

x

1

=4

Bothsidessquaring.

(x+

x

1

)

2

=4

2

x

2

+

x

2

1

+2=16

x

2

+

x

2

1

=16−2

x

2

+

x

2

1

=14

Answered by happeninghomo
0

8 \sqrt{3}

Step-by-step explanation:

x = 2 +  \sqrt{3}

 \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }

On rationalising,

 \frac{1}{x}  = 2 -  \sqrt{3}

As we know,

x ^{2}  - y ^{2}  = (x - y)(x + y)

Using this,

x ^{2}  -   \frac{1}{x ^{2} }  = (x -  \frac{1}{x}  )( x +  \frac{1}{x} )

So putting values of x and 1/x, we get:

x ^{2}  -  \frac{1}{ {x}^{2} }  = (2 +  \sqrt{3}  - (2  -   \sqrt{3} )) (2 +  \sqrt{3}  + 2 -  \sqrt{3} )

Then,

x ^{2}  -  \frac{1}{ {x}^{2} } = 4 \times 2 \sqrt{3}  = 8 \sqrt{3}

Similar questions