if x=2+root 3 find the value of x square-1/x square
Answers
Step-by-step explanation:
Here is your solution
Given :-
x=2+√3
Now
\begin{gathered} \frac{1}{x} = \frac{1}{2 +\sqrt{3} } \times \frac{2 -\sqrt{3} }{2 - \sqrt{3} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{2 {}^{2} - ( \sqrt{3}) {}^{2} } \\ \frac{1}{x} = \frac{2 + \sqrt{3} }{4 - 3} \\ \frac{1}{x} = 2 - \sqrt{3} \\ \\ \\ \end{gathered}
x
1
=
2+
3
1
×
2−
3
2−
3
x
1
=
2
2
−(
3
)
2
2+
3
x
1
=
4−3
2+
3
x
1
=2−
3
\begin{gathered} x + \frac{1}{x} = 2 - \sqrt{3} + 2 + \sqrt{3} \\ x + \frac{1}{x} = 4 \\ Both \: sides \: squaring. \: \\ (x + \frac{1}{x} ) {}^{2} = 4 {}^{2} \\ x {}^{2} + \frac{1}{x {}^{2} } + 2 = 16 \\ x {}^{2} + \frac{1}{x {}^{2} } = 16 - 2 \\ x {}^{2} + \frac{1}{x {}^{2} } = 14\end{gathered}
x+
x
1
=2−
3
+2+
3
x+
x
1
=4
Bothsidessquaring.
(x+
x
1
)
2
=4
2
x
2
+
x
2
1
+2=16
x
2
+
x
2
1
=16−2
x
2
+
x
2
1
=14
Step-by-step explanation:
On rationalising,
As we know,
Using this,
So putting values of x and 1/x, we get:
Then,