If x= 2+root 3 then find value of x-1/x
Answers
Answered by
0
Step-by-step explanation:
\sf{GIVEN:-}
x = 2 + √3
1/x = 1/(2 + √3) * (2 - √3)/(2 - √3)
1/x = (2 - √3)/(4 - 3)
[ (a - b)(a + b) = (a² - b²) ]
1/x = (2 - √3)
now,
x + 1/x = (2 + √3) + (2 - √3)
x + 1/x = 2 + 2 + √3 - √3
x + 1/x = 4
Hope it Helps.....!
Answered by
5
Answer:
2√3
Step-by-step explanation:
⇒ x = 2 + √3
⇒ 1/x = 1/( 2 + √3 )
Multiply as well as divide( RHS ) by 2 - √3:
⇒ 1/x = ( 2 - √3 ) / ( 2 + √3 )( 2 - √3 )
⇒ 1/x = ( 2 - √3 ) / [ (2)^2 - (√3)^2 ]
⇒ 1/x = ( 2 - √3 ) / ( 4 - 3 )
⇒ 1/x = ( 2 - √3 )/1
⇒ 1/x = 2 - √3
Hence,
⇒ x - 1/x
⇒ 2 + √3 - ( 2 - √3 )
⇒ 2 + √3 - 2 + √3
⇒ √3 + √3
⇒ 2√3
Similar questions