Math, asked by vineetmhp4499, 1 year ago

If x =2 root of 3 + 2 root of 2 ;find : 1/x,x+1/x,(x+1/x)^2

Answers

Answered by Anonymous
8

Answer:

\large\bold\red{\frac{ \sqrt{3}  -  \sqrt{2} }{2}}\\\\\large\bold\red{\frac{5 \sqrt{3} + 3 \sqrt{2}  }{2}}\\\\\large\bold\red{ \frac{93 + 30 \sqrt{6} }{4}}

Step-by-step explanation:

Given,

x = 2 \sqrt{3}  + 2 \sqrt{2}

Therefore,

We get,

x = 2 (\sqrt{2}  +  \sqrt{3} )

Now,

 \frac{1}{x}  =  \frac{1}{2( \sqrt{3} +  \sqrt{2}  )}  \\  \\  =  >  \frac{1}{x}  =  \frac{1}{2}  \times  \frac{1}{( \sqrt{3} +  \sqrt{2}  )}  \times  \frac{( \sqrt{3}  -  \sqrt{2}) }{( \sqrt{3}  -  \sqrt{2}) }  \\  \\  =  >  \frac{1}{x}  =  \frac{( \sqrt{3} -  \sqrt{2}  )}{2( { (\sqrt{3}) }^{2} -  { (\sqrt{2} )}^{2})  }  \\  \\  =  >  \frac{1}{x}  =  \frac{( \sqrt{3} -  \sqrt{2} ) }{2(3 - 2)}  \\  \\  =  >   \large \bold{\frac{1}{x}  =  \frac{ \sqrt{3}  -  \sqrt{2} }{2} }

Now,

 x + \frac{1}{x}  \\  \\  = 2( \sqrt{3}  +  \sqrt{2} ) +  \frac{( \sqrt{3}  -  \sqrt{2}) }{2}  \\  \\  =  \frac{4( \sqrt{3 } +  \sqrt{2} )  +  (\sqrt{3} -  \sqrt{2})  }{2}  \\  \\  =  \frac{5 \sqrt{3}  + 3 \sqrt{2} }{2}  \\  \\  =  >  \large \bold{x +  \frac{1}{x}  =  \frac{5 \sqrt{3} + 3 \sqrt{2}  }{2} }

Again,

 {(x +  \frac{1}{x}) }^{2}  \\  \\  =   { (\frac{5 \sqrt{3}  + 3 \sqrt{2} }{2} )}^{2}  \\  \\  =  \frac{ {(5 \sqrt{3} + 3 \sqrt{2}  )}^{2} }{ {2}^{2} }  \\  \\  =  \frac{ {(5 \sqrt{3})  }^{2} +  {(3 \sqrt{2} )}^{2} + 2( 5\sqrt{3})(3 \sqrt{2}   ) }{4}  \\  \\  =  \frac{75 + 18 + 30 \sqrt{6} }{4}  \\  \\  =  \frac{93 + 30 \sqrt{6} }{4}  \\  \\  =  > \large \bold{  {(x +  \frac{1}{x} )}^{2}  =  \frac{93 + 30 \sqrt{6} }{4} }

Similar questions