Math, asked by nisha12345, 1 year ago

if x =(2+root3) find the value of x²+1/x²

Answers

Answered by Alia15
2
If x= 2+sqrt3
Then,
1/x=2-sqrt3 (by rationaliztion denominator)

Then                       (x+1/x)^2 = x^2+(1/x)^2 +2*x*(1/x)
That is (2+sqrt3 +2-sqrt3)^2=x^2 +(1/x)^2+2
                                     4^2 -2=x^2+(1/x)^2
Therefore, 14 is the answer
Answered by atul103
5
hey!
#Ur Ans
____________

Given that
X = 2+√3
then

1/X = 1/2+√3

==> 1/2+√3 × (2-√3)/(2-√3)

==> 2-√3/4-3

1/X = 2-√3

now

(x +  \frac{1}{x}) {}^{2}  = x {}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \\  =  > (2 +  \sqrt{3 } + 2 -  \sqrt{3}  {)}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \\  =  > (4 {)}^{2}  =  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 \\  \\  =  > 16 =  {x }^{2}   +  \frac{1}{ {x}^{2} }  + 2 \\  \\  =  >  {x}^{2}  +  \frac{1}{ {x}^{2} }  = 14 \: ans
✌☺

Similar questions