Math, asked by nihira89, 10 months ago

If x = 2 + root3, find (x+1÷x)power 3

Answers

Answered by Delta13
1

Given:

{x =  2 +  \sqrt{3} }

To find:

 \\  ({x +  \frac{1}{x} )}^{3}  = ?

Solution:

x = 2 +  \sqrt{3}  \\  \\  \frac{1}{x}  =  \frac{1}{2 +  \sqrt{3} }  \\  \\ rationalising \: the \: denominator \\  \\  =  >  \frac{1}{2 +  \sqrt{3}  }  \frac{ \times (2 -  \sqrt{3} )}{ \times (2 -  \sqrt{3}) }  \\  \\  =  >  \frac{2 -  \sqrt{3} }{ {2}^{2} - ( \sqrt{3} ) {}^{2}  }  \\  \\  =  >  \frac{1}{x}  =  \frac{2 -  \sqrt{3} }{4 - 3}  = 2 -  \sqrt{3}

Now,

x +  \frac{1}{ x}  = 2 +  \sqrt{3}  + (2 -  \sqrt{3} ) \\  \\  =  &gt; x +  \frac{1}{x}  = {4} \\  \\  \\ </em><em>Now</em><em>,</em><em> </em><em>\</em><em>\</em><em>{(x +  \frac{1 }{x} )}^{3}  = (4) {}^{3}  \\  \\  =  &gt; (x +  \frac{1}{x} ) {}^{3}  ={ 64}

If it helps you then Mark as brainliest.

Similar questions