if x = 2 + root3, then find the value of:
a) x + 1/x
b) x^2 + 1/x^2
Answers
Answered by
2
Answer:
4 and 14
Step-by-step explanation:
⇒ x = 2 + √3
⇒ 1 / x = 1 / ( 2 + √3 )
Multiply as well as divide RHS by 2 - √3 :
⇒ 1 / x = ( 2 - √3 ) / ( 2 + √3 )( 2 - √3 )
⇒ 1 / x = ( 2 - √3 ) / ( 2^2 - √3^2 )
⇒ 1 / x = ( 2 - √3 ) / ( 4 - 3 )
⇒ 1 / x = ( 2 - √3 ) / 1
⇒ 1 / x = 2 - √3
Hence,
⇒ x + 1 / x
= 2 + √3 + 2 - √3
= 2 + 2 = 4
Square on both sides:
⇒ ( x + 1 / x )^2 = 4^2
⇒ x^2 + 1 / x^2 + 2(x*1/x) = 16
⇒ x^2 + 1 / x^2 + 2 = 16
⇒ x^2 + 1 / x^2 = 16 - 2 = 14
Similar questions