Physics, asked by vedantkudale0758, 9 months ago

if x= 2 t³and y=3t² then the value of Dy/dx​

Answers

Answered by kaushik05
9

Given:

• x= 2 t³

• y = 3t²

To find :

• dy/dx

Solution:

Differentiate both x and y wr.t. t ,

For x :

 \implies \:  x = 2 {t}^{3}  \\  \\  \implies \:  \ \frac{dx}{dt}  =  \frac{d}{dt} 2 {t}^{3 }  \\  \\  \implies \:  \frac{dx}{dt}  = 6 {t}^{2}

For y :

 \implies \: y = 3 {t}^{2}  \\  \\  \implies \:  \frac{dy}{dt}  =  \frac{d}{dt} 3 {t}^{2}  \\  \\  \implies \:  \frac{dy}{dt}  = 6t

Now :

 \star \:  \frac{dy}{dx}  =  \frac{ \frac{dy}{dt} }{ \frac{dx}{dt} }  \\  \\  \star \:  \frac{dy}{dx}  =  \frac{6t}{6 {t}^{2} }  \\  \\  \ \star \:  \frac{dy}{dx}  =  \frac{1}{t}

Formula :

 \star \boxed{  \bold{ \red{\frac{d}{dx}  {x}^{n}  = n {x}^{n - 1} }}}

Answered by Anonymous
3

Given ,

The two functions are

  • x = 2(t)³
  • y = 3(t)²

Differentiaing x wrt t , we get

 \tt \implies \frac{dx}{dt}  =  \frac{d  \{2 {(t)}^{3}  \}}{dt}

 \tt \implies \frac{dx}{dt}  =  6 {(t)}^{2}

Similary , differentiaing y wrt t , we get

 \tt \implies \frac{dy}{dt}  =  \frac{d  \{3 {(t)}^{2}  \}}{dt}

 \tt \implies \frac{dy}{dt}  =  6t

Now ,

dy/dx = dy/dt ÷ dx/dt

Thus ,

 \tt \implies \frac{dy}{dx}  =  \frac{6t}{6 {(t)}^{2} }

 \tt \implies \frac{dy}{dx}  =   \frac{1}{t}

________________ Keep Smiling

Similar questions