Math, asked by maria819, 9 months ago

IF X^2-X-6 AND X^2+3X-18 HAVE COMMON FACTOR (X-A) THEN FIND VAULE OF A​

Answers

Answered by Abhishek2610
4

Answer:

A=3

Step-by-step explanation:

The two equations will be equal to each other as both have the same root

So,

x-A=0

x=A

Now,

x^2-x-6=x^2+3x-18

Put the value of x in the two equations,

A^2-A-6=A^2-3A-18

A^2-A^2-A-3A=-18+6

-4A=-12

A=-12/-4

A=3

HOPE IT HELPS

MARK ME AS BRAINLIEST

Answered by pubggrandmaster43
13

                                                                                                   

  • Answer:
  • a = 15

                                                                                                       

  • solution

                                                                                                       

if x -a i s the factor of both  equation 1 and 2

take any one equation and using reminder theorem and solve

i take 2 equation = x^{2}+3 x-18

then,

x-a = 0

x=a put the value in equation f(x)= x^{2}+3 x-18

  f(a)a^{2} +3a-18=0

         ⇒a^{2} +3a=18

         ⇒a^{2}=18-3a

        ⇒\frac{a^{2}}{a} = 18 - 3

        ⇒a = 15

                                                                                                       

may be it is helpful for you

Similar questions