Math, asked by shekhar78371, 11 months ago

if x^2+y^2=13 and xy=6, find fhe value of x-y

Answers

Answered by albychristo
0

Answer: +1 or -1

Step-by-step explanation:

(x-y)²= x²+ y²- 2xy

(x-y)²= 13 - 2. 6

(x-y)²= 1

(x-y)= +1 or -1

Answered by BrainlyConqueror0901
3

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore x-y=1}}

{\bold{\therefore x-y=-1}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{given : } \\  \implies  {x}^{2}  +  {y}^{2}  = 13 \\  \\  \implies xy = 6 \\  \\   \underline \bold{to \: find : } \\  \implies x - y = ?

• According to given question :

 \bold{using \: some \: identity \: of \: algebra : }  \\ \implies  {x}^{2}  +  {y}^{2}  = 13 \\  \\  \implies ({x + y})^{2}  - 2xy = 13 \\  \\ \bold{ putting \: value \: of \: xy : } \\  \implies  ({x + y)}^{2}  - 2 \times 6 = 13 \\  \\  \implies  {(x + y)}^{2}  - 12 = 13 \\  \\  \implies  {(x + y)}^{2}  = 13 + 12 \\  \\   \implies  x + y =   \sqrt{25}  \\  \\  \implies x + y = 5 -  -  -  -  - (1) \\  \\  \implies xy = 6 \\  \\   \bold{\implies x =  \frac{6}{y} -  -  -  -  - (2) } \\  \\  \bold{putting \: value \: of \: x \: in \: (1)} \\  \implies  \frac{6}{y}  + y = 5 \\  \\  \implies  6 +  {y}^{2}   =5 y \\   \\  \implies  {y}^{2}  - 5y + 6 = 0 \\  \\  \implies  {y}^{2}  - 3y - 2y + 6 = 0 \\  \\  \implies y(y - 3) - 2(y - 3) = 0 \\  \\  \implies( y - 2)(y - 3) = 0 \\  \\    \bold{\implies y = 2 \: and \: 3} \\  \\  \bold{putting \: value \: of \: y = 2 \: in \: (2)} \\   \implies  \bold{x  = 3} \\  \\  \bold{putting \: value \: of \: y = 3 \: in \: (2)} \\   \bold{\implies x = 2} \\  \\ \bold{for \: finding \:  value : } \\   \bold{\implies x - y  = 3 - 2 = 1} \\  \\   \bold{\implies x - y = 2 - 3 =  - 1}

Similar questions