if x^2+y^2=29xy then prove that 2log(x-y)=3log3+logx+logy
Answers
Answered by
2
Answer:
Step-by-step explanation:
⇒ x^2 + y^2 = 29xy
⇒ x^2 + y^2 = 27xy + 2xy
⇒ x^2 + y^2 - 2xy = 27xy
⇒ ( x - y )^2 = 27xy
⇒ log( x - y )^2 = log( 27xy )
Using the properties of log:
⇒ 2log( x - y ) = log( 27 * x * y )
⇒ 2 log( x - y ) = log27 + log x + log y
⇒ 2 log( x - y ) = log3^3 + log x + log y
⇒ 2 log( x - y ) = 3 log3 + logx + logy
Proved
Answered by
0
Answer:
I hope that this answer helps you
Attachments:
![](https://hi-static.z-dn.net/files/d13/4fd162076a79333f5b056178d20b054b.jpg)
![](https://hi-static.z-dn.net/files/d09/d640c93fa1a1c913a3daa8c110c14e00.jpg)
Similar questions
Chemistry,
6 months ago
Chemistry,
6 months ago
English,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago