If x^2+ y^2=58 andx+y=10, then find the value of x^3+y^3.
Answers
Answered by
14
since
(x+y)²=x²+y²+2xy,
then
10²=58+2xy,
100-58=2xy,
2xy=42,
xy=21,
therefore
x³+y³=(x+y)(x²+y²-xy),
x³+y³=10×(58-21),
x³+y³=10×37,
x³+y³=370
(x+y)²=x²+y²+2xy,
then
10²=58+2xy,
100-58=2xy,
2xy=42,
xy=21,
therefore
x³+y³=(x+y)(x²+y²-xy),
x³+y³=10×(58-21),
x³+y³=10×37,
x³+y³=370
Answered by
2
Answer:
Given
x^2+y^2=58
x+y = 10
To find
x^3+y^3 = ?
Solution:
(x+y)^2=x^2+y^2+2xy
(10)^2 = 58+2xy
100 = 58+2xy
2xy = 100 - 58
2xy = 42
xy = 42/2
xy = 21
now
x^3+y^3= (x+y)(x^2+y^2-xy)
= 10 (58 21)
= 10 X 37
x^3+y^3= 370
Similar questions