Math, asked by nitishrajbongshi, 9 months ago

if x = 2mn/m+n show that x+m/x-m + x+n/x-n = 2​

Answers

Answered by shubham39517
0

Answer:

sorry I can't answer it

Answered by Sitααrα
28

Given :

  •   \\ \textsf {if x =}   {\tt \: \dfrac{2 \: m \: n}{m + n}}   \:  \: \textsf{show that  } \:  \: \tt{ \dfrac{x + m}{x - m}  + \dfrac{x + n}{x - n} = 2} \:

Solution :

 \\  \tt  x =  \frac{2mn}{m + n} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\   : \implies \tt\frac{x }{m}  =  \frac{2n}{m + n}  \\  \\

By applying the formula of Componendo and Dividendo in the equation we get :

 \\   \tt \:  \:  \: \dashrightarrow \:  \frac{x + m}{x - m}  =  \frac{2n + m + n}{2n - m - n}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \\  \\  \\  \tt \: \dashrightarrow \:  \:  \:  \frac{x + m}{x - m}  =  \frac{3n + m }{n - m }   \:  \: ——— \:( 1) \\  \\  \\

Again,

 \\  \tt  x =  \frac{2mn}{m + n} \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\   : \implies \tt\frac{x }{n}  =  \frac{2m}{m + n}  \\  \\

By applying the formula of Componendo and Dividendo in the equation we get :

 \\   \tt \:  \:  \: \dashrightarrow \:  \frac{x + n}{x - n}  =  \frac{2m + m + n}{2m - m - n}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \: \\  \\  \\  \tt \: \dashrightarrow \:  \:  \:  \frac{x + n}{x - n}  =  \frac{3m+ n }{m - n }   \:  \: ——— \:( 2) \\  \\  \\

Now, adding equation (1) and (2) :

  \\  \tt \: \frac{x + m}{x - m}   +  \frac{x + n}{ x- n} =  \frac{3n + m}{n - m}  +  \frac{3m + n}{m - n}  \\  \\  \\  \tt \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{3n + m}{n - m}   -   \frac{3m + n}{n - m} \\  \\  \\  \tt \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:=  \frac{3n + m - 3m - n}{n - m}  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:\tt \: =  \:  \:   \frac{2n - 2m}{n - m}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \tt \:  =  \:  \frac{2 \cancel {(n - m)}}{ \cancel{(n - m)}}  \\  \\  \\  \tt \:  = \:  { \mathfrak{ \pmb{2}}} \\  \\

Similar questions